

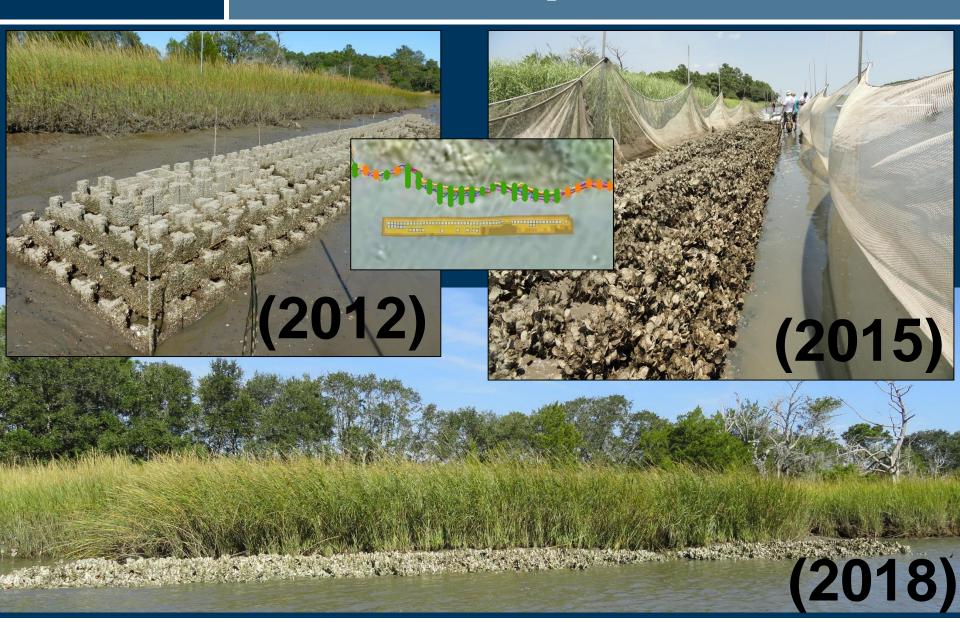
Water, Water Everywhere: How Nature Can Help

Joy Brown
Marine Program Manager
South Carolina Chapter

LIVING SHORELINES

2018 Carolinas Climate Resilience Conference

NOAA's Definition


Guidance for Considering the Use of Living Shorelines (2015)

DEFINING LIVING SHORELINES

Living shoreline is a broad term that encompasses a range of shoreline stabilization techniques along estuarine coasts, bays, sheltered coastlines, and tributaries. A living shoreline has a footprint that is made up mostly of native material. It incorporates vegetation or other living, natural "soft" elements alone or in combination with some type of harder shoreline structure (e.g. oyster reefs or rock sills) for added stability. Living shorelines maintain continuity of the natural land—water interface and reduce erosion while providing habitat value and enhancing coastal resilience.

SC Example

Storm Tested

Rock sill LS/natural marsh/hard shorelines Hurricane Matthew, NC (2015 – 2017)

(Smith et al 2018, Eco App)

- Better resistance to landward erosion (HM) & maintained elevation (2 yr)
- Enhance S. alterniflora vs nat'l marsh

Defense concept by Corps – North Atl Comprehensive Coastal Study (2015)

 Risk reduction performance summary: coastal erosion, floods, wave attenuation (sm & med), storm surge

NOAA LS Support Resilient Communities

- 15' of marsh can absorb 50% of incoming wave energy
- 33% of US shorelines will be hardened by 2100
- Hard structures prevent marsh migration inland & create seaward erosion

Cost Comparison

2016 GSAA LS Summit - GA by Ed Hoffman @ Greenworks, LLC

Concrete Bulkhead - 200	LF			
Mobilization	1	LS	7500	7500
Precast Concrete Sheetpile	1	LS	60000	60000
Concrete Pile Cap	15	CY	500	7500
Tie Backs	10	EA	1500	15000
Weephole Drains/Gravel	10	EA	500	5000
Fabric	1	LS	600	600
Type 1 Rip Rap(Toe Protection)	100	TN	70	7000
Labor	300	HR	120	36000
Equipment	1	LS	20000	20000
Fuel	1	LS	5000	5000
Subtotal				163600
Company Overhead			_	24540
Estimated Company Return				16360
Total				204500
	Cost/LF		\$1,023	

Rip Rap Type 3 w/ Typ	e 1 Toe -	200L	F w/ 18' slope	
Mobilization	1	LS	5000	5000
Rip Rap (embankment)(18")	350	TN	65	22750
Rip Rap (toe)	100	TN	70	7000
Equipment	1	LS	6500	6500
Labor	200	HR	120	24000
Tiebacks		EA	1500	0
Filter Fabric	1	LS	1200	1200
Fuel	1	LS	4500	4500
Subtotal				70950
Company Overhead				10643
Estimated Company Return				7095
Total				88688
	Cost/LF		\$443	

Vinyl Bulkhead - 200LF				
Mobilization	1	LS	4500	4500
Vinyl Sheetpile	1	LS	26000	26000
Timber Pile Cap	1	LS	3000	3000
Tie Backs	10	EA	1500	15000
Weephole Drains/Gravel	10	EA	500	5000
Fabric	1	LS	600	600
Labor	240	HR	120	28800
Type 1 Rip Rap(Toe Protection)	100	TN	70	7000
Equipment	1	LS	15000	15000
Fuel	1	LS	4500	4500
Misc	1	LS		5000
Subtotal				114400
Company Overhead				11440
Estimated Company Return				11440
Total				137280
	Cost/LF		\$686	

Living Shoreline - 200	LF			
Mobilization	1	LS	4500	4500
Oyster Shell	350	TN	60	21000
Prep and Grade	1	LS	1500	1500
Anchors	10	EA	150	1500
Geotech	1	LS	1200	1200
Labor	120	HR	120	14400
Recycled Concrete Toe	100	TN	65	6500
Equipment	1	LS	5000	5000
Fuel	1	LS	4500	4500
Subtotal				60100
Company Overhead				6010
Estimated Company Return				6010
Total				72120
	Cost/LF		\$361	

Cost Comparison

Technique	Estimated Cost of Materials	Technique	Estimated Cost of Materials	Technique	Estimated Cost of Materials
Nature-Based Living Shoreline	Coir Log (coconut fiber) 12" X 10' \$100.00—\$150.00 per log	Ecologically Enhanced Revetment	\$90.00-\$150.00 per linear ft.	Living Reef Breakwater	\$100.00-\$150.00 per linear ft.
	Sand Replenishment	Bulkhead	\$80-\$1,200 per linear ft.		
Beach Restoration	\$7.00-17.50 per cubic yard			Breakwater	\$90.00-\$150.00 per linear ft.
	\$75.00-\$150.00 per				
Marsh Sill	linear ft.	Seachange	Consulting, 2011, Re		iller, J. PhD., 2012,

and Hafner, S., 2012

Permitting & Policy

Army Corps of Engineers

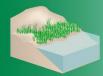
- NWP 54 (2017)
- NWP 13 & 27

SC GP

Under development (2020-2021)

NC GP

Riprap Revetments for Wetland Protection in Estuarine & Public Trust Waters; Marsh (Rock) Sills


HOW GREEN OR GRAY SHOULD YOUR SHORELINE SOLUTION BE?

GREEN - SOFTER TECHNIQUES

GRAY - HARDER TECHNIQUES

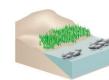
Coastal Structures

Living Shorelines

VEGETATION ONLY -

Provides a buffer to upland areas and breaks small waves. Suitable for low wave energy environments.

EDGING -


Added structure holds the toe of existing or vegetated slope in place. Suitable for most areas except high wave energy

environments.

SILLS -

Parallel to vegetated shoreline, reduces wave energy, and prevents erosion. Suitable for most areas except high wave energy environments.

BREAKWATER-

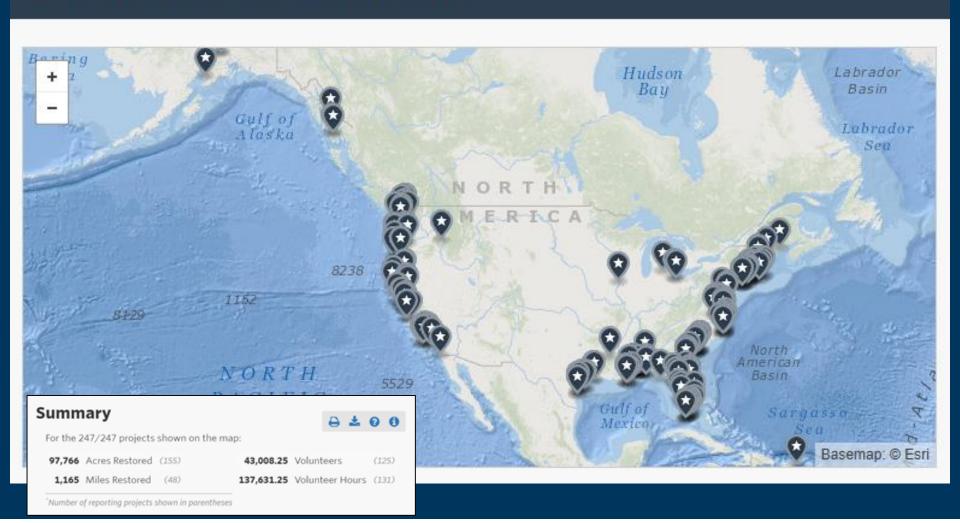
(vegetation optional) - Offshore structures intended to break waves. reducing the force of wave action, and encourage sediment accretion. Suitable for most areas.

REVETMENT -

Lays over the slope of the shoreline and protects it from erosion and waves. Suitable for sites with existing hardened shoreline settings and sites structures.

BULKHEAD -

Vertical wall parallel to the shoreline intended to hold soil in place. Suitable for high energy with existing hard shoreline structures.


TNC's Coastal

Restoration

NATURAL INFRASTRUCTURE + RESTORATION PROJECTS

http://projects.tnc.org/coastal/

CR.org/NC/LS

Explorer

Living Shoreline

Academy

Interactive Map,
Database & Submission

Property Owners & Professionals

https://livingshorelinesacademy.org/

Literature, Online, Powerpoints, Videos, Workshops/Webinars

Existing Professional
Contacts & Submission
Form

HOME

AROUT

LEARN

PROJECTS

RESOURCES

PROFESSIONAL DIRECTORY

CONTACT US

FORUM

LEARN ABOUT LIVING SHORELINES

Learn about living shorelines – what they are, how they are designed and built, and how they serve our coastal habitats and communities. Whether you are a property owner looking for alternatives to mitigate erosion on your shoreline property, or a contractor or a policy maker looking to gain more in depth knowledge about the design and permitting of living shorelines, on this site you can find a course, project databases, literature and additional resources to help you achieve those goals.

LEARN MORE

Joy Brown

joy_brown@tnc.org (843) 937-8807 x35

Websites & Sources of Additional Information

- NOAA's Guidance for Considering the Use of Living Shorelines (2015)
- TNC's Coastal Resilience site Projects & Mapping Portal
- <u>Living Shoreline Academy</u>
- NC Coastal Federation How they are making LS the go-to erosion control
- <u>Island Free Press 10.23.18 NC Lawmakers Enable Use of Living Shorelines for Hurricane Recovery</u>
- NC Coastal Federation photo slide show of LS vs bulkheads after Hurricane Florence
- SC DHEC LS Working Group
- LS: The Science & Management of Nature-Based Coastal Protection
- Sustainable Adaptive Gradients (SAGE)
- SAGE Searchable Project Database
- LS Legislative Initiatives State and Regional

Websites & Sources of Additional Information (cont)

- <u>Living shorelines enhances the resilience of saltmarshes to Hurricane Matthew</u>
 (2016)
- The time to start is now: How implementing natural infrastructure solutions can improve and protect our coasts
- Lowcountry Land Trust: Living Shorelines Support Resilient Communities
- A Community Resource Guide for Planning Living Shorelines Projects
- How to Protect Your Property from Shoreline Erosion: A handbook for estuarine property owners in North Carolina
- A Comparative Cost Analysis of Ten Shore Protection Approaches at Three Sites
 Under Sea Level Rise Scenarios
- Beach Stabilization: Structure and Beach Renourishment Alternatives

Communication

Ecological Applications, 28(4), 2018, pp. 871–877 © 2018 by the Ecological Society of America

Living shorelines enhanced the resilience of saltmarshes to Hurricane Matthew (2016)

CARTER S. SMITH D, 1,4 BRANDON PUCKETT D, 2 RACHEL K. GITTMAN D, 3 AND CHARLES H. PETERSON 1

¹Institute of Marine Sciences, University of North Carolina at Chapel Hill, 3431 Arendell Street, Morehead City, North Carolina 28557 USA

²North Carolina Coastal Reserve and National Estuarine Research Reserve, Beaufort, North Carolina 28516 USA

³Department of Biology and Institute for Coastal Science and Policy, Eastern Carolina University, Greenville, North Carolina 27858 USA

Evaluated rock sill living shorelines compared to natural marshes and hardened shorelines (i.e. bulkheads) in NC

Analyzed changes in surface elevation, *Spartina alterniflora* stem density, and structural damage from 2015 to 2017, including before and after Hurricane Matthew (2016)

Living shorelines exhibited better resistance to landward erosion during Hurricane Matthew than bulkheads and natural marshes

Living shorelines were more resilient than hardened shorelines (maintained landward elevation over the two-year study period with any repair)

Rock sill living shorelines were able to enhance *S. alterniflora* stem densities over time when compared to natural marshes

The time to start is now: How implementing natural infrastructure solutions can improve and protect our coasts

By

Shannon E. Cunniff Environmental Defense Fund scunniff@edf.org

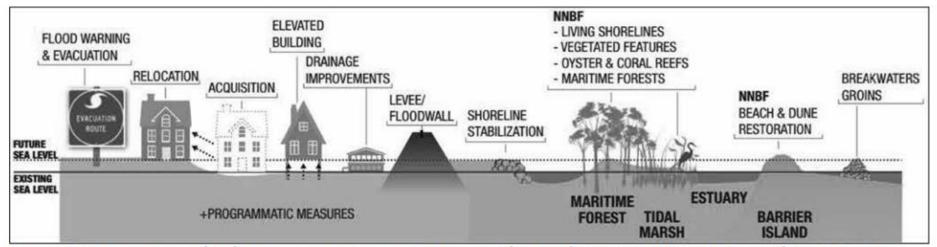


Figure 1: Multiple lines of defense concept as presented by the Corps of Engineers' North Atlantic Comprehensive Coastal Study (2015).

Table 1.

Natural defenses: Summary of risk reduction performance. Factors effecting risk reduction performance include storm intensity, track, forward speed, surrounding local bathymetry and topography.

	_				
Key - = Low confidence, feature not likely to address + = High confidence, data available ~ = Limited confidence refinement needed Blank = no confidence or no data Strategy	Reduce coastal erosion/ shoreline	Nuisance floods (high tides with sea n level rise)	Short wave (<2') attenuation (stabilize sediment)	Reduce force & height of medium waves (2'-5')	Storm surge (low frequency extreme events)
Structural	stabilizatio	ii ievei iise)	sediment)	(2 -3)	events
Groins	+	-	+		
Breakwaters	+	_	+	+	
Seawalls/revetments/bulkheads	+	+		+	+
Surge barriers	_			+	+
Existing natural					
Wetlands	+		+	~	~
Mangroves/coastal forest	+		+	+	+
Vegetated dunes	+		+	+	+
Nature-based					
Beach nourishment	+	+	+	+	
Vegetated dune creation	+	+	+	+	+
Barrier island restoration	+	+	+	+	+
Small-scale edging and sills					
(living shorelines)	+	~	+		
Restored oyster/shellfish reefs	+		+	~	
Restored/created coral reefs	+		+	~	
Restored maritime forests					
(including mangroves)	+	+	+	+	+
Restored wetlands	+	+	+	~	~

The Costs of Shoreline Stabilization

Traditional, Hard Structure Impacts:

Maintenance costs are significant and ongoing expenses when a hard defense is selected and therefore likely to result in significant levels of investment through a project's lifetime

Construction and maintenance costs are likely to increase into the future in response to sea level rise

Smooth, vertical seawalls are the least effective at dissipating wave energy and can create a loss of marsh

"Living shorelines are crucial to habitat development and to the conservation of fish, birds and other wildlife. We must continue to promote these kinds of restoration activities as they are vital to sustaining the delicate ecological system."

-Tom Kelsch, Director of Conservation Programs for the National Fish and Wildlife Foundation.

Visit PDF for additional information Living Shoreline Impacts and Benefits

The Costs of Shoreline Stabilization

Concrete Bulkhead - 200	LF			
Mobilization	1	LS	7500	7500
Precast Concrete Sheetpile	1	LS	60000	60000
Concrete Pile Cap	15	CY	500	7500
Tie Backs	10	EA	1500	15000
Weephole Drains/Gravel	10	EA	500	5000
Fabric	1	LS	600	600
Type 1 Rip Rap(Toe Protection)	100	TN	70	7000
Labor	300	HR	120	36000
Equipment	1	LS	20000	20000
Fuel	1	LS	5000	5000
Subtotal				163600
Company Overhead				24540
Estimated Company Return				16360
Total				204500
	Cost/LF		\$1,023	

Rip Rap Type 3 w/ Type	1	Toe	- •	200LF	w/ 18' slo	pe
Mobilization			1	LS	5000	5000
Rip Rap (embankment)(18")		3	350	TN	65	22750
Rip Rap (toe)		1	100	TN	70	7000
Equipment			1	LS	6500	6500
Labor		2	200	HR	120	24000
Tiebacks				EA	1500	0
Filter Fabric			1	LS	1200	1200
Fuel			1	LS	4500	4500
Subtotal						70950
Company Overhead						10643
Estimated Company Return						7095
Total						88688
	C	ost/	LF		\$443	

Vinyl Bulkhead - 200LF				
Mobilization	1	LS	4500	4500
Vinyl Sheetpile	1	LS	26000	26000
Timber Pile Cap	1	LS	3000	3000
Tie Backs	10	EA	1500	15000
Weephole Drains/Gravel	10	EA	500	5000
Fabric	1	LS	600	600
Labor	240	HR	120	28800
Type 1 Rip Rap(Toe Protection)	100	TN	70	7000
Equipment	1	LS	15000	15000
Fuel	1	LS	4500	4500
Misc	1	LS		5000
Subtotal				114400
Company Overhead				11440
Estimated Company Return				11440
Total				137280
	Cost/LF		\$686	

Living Shoreline - 200 LF				
Mobilization	1	LS	4500	4500
Oyster Shell	350	TN	60	21000
Prep and Grade	1	LS	1500	1500
Anchors	10	EA	150	1500
Geotech	1	LS	1200	1200
Labor	120	HR	120	14400
Recycled Concrete Toe	100	TN	65	6500
Equipment	1	LS	5000	5000
Fuel	1	LS	4500	4500
Subtotal				60100
Company Overhead				6010
Estimated Company Return				6010
Total				72120
	Cost/LF		\$361	

LIVING SHORELINES SUPPORT RESILIENT COMMUNITIES

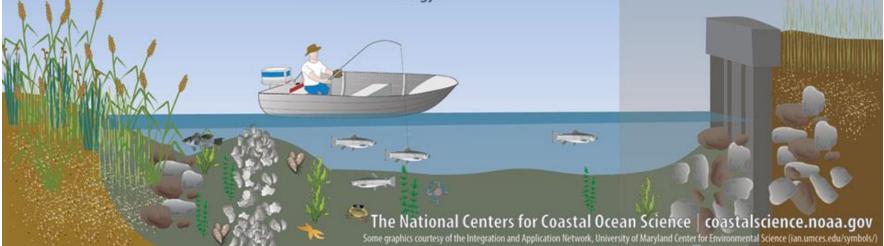
Living shorelines use plants or other natural elements—sometimes in combination with harder shoreline structures—to stabilize estuarine coasts, bays, and tributaries.

One square mile of salt marsh stores the carbon equivalent of 76,000 gal of gas annually.

Marshes trap sediments from tidal waters. allowing them to fisheries habitat, grow in elevation as sea biodiversity, level rises.

Living shorelines improve water quality, provide increase and promote recreation.

Marshes and oyster reefs act as natural barriers to waves. 15 ft of marsh can absorb 50% of incoming wave energy.


Living shorelines are more resilient against storms than bulkheads.

33% of shorelines in the U.S. will be hardened by 2100, decreasing fisheries habitat and biodiversity.

Hard shoreline structures like bulkheads prevent natural marsh migration and may create seaward erosion.

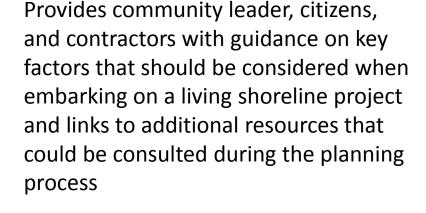
Fisheries Habitat Impacts of Marsh Sills as a Shoreline Stabilization/Restoration Alternative to Bulkheads

Surveys of 25 marsh sills in NC and assessment of the shoreline stabilization of marsh sills relative to traditional stabilization structures

Fish and crustaceans were quantified and compared between marsh sills, bulkheads, and the control (unstabilized) marshes

Post Hurricane Irene damage survey found that over 1/3 of the approximately 20km of bulkheads along the Outer Banks back-barrier shoreline were damaged or had collapsed completely

No damage was observed to marsh sill or riprap shorelines


Nekton abundance, biomass, and diversity are greater in the marsh at sill sites than control sites

Nekton using habitat directly adjacent to bulkheads are less abundant, have less biomass, and are less diverse than nekton found adjacent to sills

A Community Resource Guide for Planning Living Shorelines Projects

New Jersey Resilient Coastlines Initiative

Guide to be used with TNC's Coastal Resilience Tool

Grey infrastructure can reflect wave energy and in some cases, results in erosional threats to neighboring coastal areas and to the upland shoreline directly in front of and behind the structure

The average cost data included in the table are sample estimates for the materials of living shorelines (adapted from Seachange Consulting, 2011, Rella, A., & Miller, J. PhD., 2012, and Hafner, S., 2012 and discussed in the following slides)

Technique	Estimated Cost of Materials	Additional Benefits and Factors to Consider
Nature-Based Living Shoreline	Coir Log (coconut fiber) 12" X 10' \$100.00—\$150.00 per log	This is the most natural shoreline restoration option and it is only applicable in low energy areas. Additional factors to consider include accessibility of oyster and/or clam shell (price of shell bags does not include cost of shell), and the procurement of a bio-log. Please note, that if using bagged shell as part of the design, the state of New Jersey does not currently allow oysters to be "planted" in waters closed to shellfish harvest. More information on cost and construction of nature-based living shorelines can be found in the Partnership for the Delaware Estuary's <u>Practitioner's Guide</u> .
Beach Restoration	Sand Replenishment \$7.00-17.50 per cubic yard	Depending on the location, beach restorations can also provide habitat for shorebirds and other key species that also provide ecotourism opportunities (e.g., Red Knots and horseshoe crabs). Factors to consider include slope of the beach, wave energy, storm frequency, beach density (volume/unit length) and granular fill, access to and transportation of material and labor.
Marsh Sill	\$75.00-\$150.00 per linear ft.	Marsh sills are more appropriate in low and moderate energy environments. Although marsh sills are able to function in a wide array of energy environments, it's important to consider site specific conditions. In addition, the cost of shell bags do not include the cost of the clam or oyster shell, which can be donated by local restaurants or purchased.

Technique	Estimated Cost of Materials	Additional Benefits and Factors to Consider
Living Reef Breakwater	\$100.00-\$150.00 per linear ft.	Breakwaters attenuate more energetic waves further off of the shore, ultimately reducing shoreline edge erosion. If living reef breakwaters are designed to promote oyster habitat, the development of three-dimensional reef habitat can improve water quality and support important fish species. Decisions to use bagged-shell, oyster castles, rock or marl need to take into account the need to stabilize the structures, as well as the ability of the substrate (i.e., the ground the breakwater will be sitting on) to withstand the weight of the structures. In addition, the cost of shell bags do not include the cost of the clam or oyster shell, which can be donated by local restaurants or purchased. In addition, the state of New Jersey does not currently allow oysters to be "planted" in waters closed to shellfish harvest.**
Breakwater	\$90.00-\$150.00 per linear ft.	Implementation of rock breakwaters in higher energy wave environments requires a scrutiny of the lower soil substrate conditions (i.e., what type of ground will the breakwater be sitting on). Breakwaters will reduce wave energy but careful attention should be placed on monitoring bottom scour, which can result in negative unforeseen consequences affecting neighboring coastal areas.**
Ecologically Enhanced Revetment	\$90.00-\$150.00 per linear ft.	Although ecologically enhanced revetments can be used in a wide range of energy environments, this technique lacks inherent environmental benefits associated with lower impact living shoreline projects. In addition, this technique stabilizes shorelines but lacks a component of sediment accretion. Therefore, it should mostly be considered in high energy environments and/or areas where other techniques will not work.
Bulkhead	\$80-\$1,200 per linear ft.	Bulkheads are considered a hard armoring traditional approach. Wave energy is reflected and not absorbed, which can result in bottom scour and loss of vegetation. The natural shoreline is eliminated, resulting in a loss of upland and shallow water habitat.

Weighing Your Options

How to Protect Your Property from Shoreline Erosion:

A handbook for estuarine property owners in North Carolina

Main erosion control methods used for shorelines in NC estuaries: vegetation, oyster reeds, marsh sills, riprap, breakwaters, bulkheads

This guide gives information about the out-of-pocket costs and tangible benefits of each option as well as "hidden" costs and benefits

This guide was used as a reference in the "A Community Resource Guide for Planning Living Shorelines Projects" for the cost data (in the previous slides)

A Comparative Cost Analysis of Ten Shore
Protection Approaches at Three Sites
Under Two Sea Level Rise Scenarios

Prepared for:

Hudson River Valley Greenway

Hudson River National Estuarine

Research Reserve

As a part of:

The Hudson River

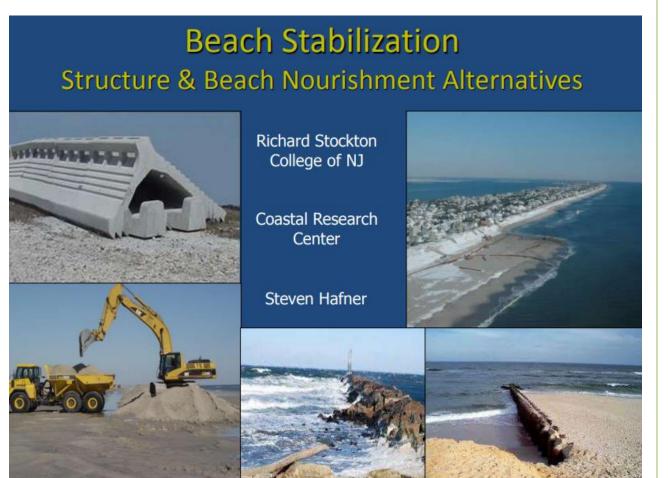
Sustainable Shorelines Project

Prepared by:

Andrew J. Rella, &

Jon K. Miller, Ph.D.

July 2012


The project generated information about the performance, cost, and natural benefits of different shoreline management options, in the context of the Hudson River Estuary's human and natural setting

A comparative cost assessment of ten different shoreline stabilization approaches at three sites, under two sea level rise scenarios with a seventy year time frame.

The ten approaches included: timber bulkhead, steel sheet pile bulkhead, bio-walls, revetments, riprap, joint planting, vegetated geogrids, timber cribbing, live crib walls, and sills

This analysis was used as a reference in the "A Community Resource Guide for Planning Living Shorelines Projects" for the cost data (in the previous slides)

Coastal Overview
Coastal Processes
Coastal Development

Beach Stabilization
Structures
Hard Structure
Soft Structure

Beach Nourishment Methods

Backpassing and Bypassing Economics

Cost estimates given for the examples

This analysis was used as a reference in the "A Community Resource Guide for Planning Living Shorelines Projects" for the cost data (in the previous slides)